Fish have evolved superpowered vision in the deep-dark ocean

[Edited By: Admin]

Friday, 10th May , 2019 03:15 pm

When the ancestors of cave fish moved into pitchblack caverns, their eyes virtually disappeared over generations. But fish that ply the sea at depths greater than sunlight can penetrate have developed super-vision, highly attuned to the faint glow and twinkle given off by other creatures.

They owe this power, evolutionary biologists have learned, to an extraordinary increase in the number of genes for rod opsins, retinal proteins that detect dim light. Those extra genes have diversified to produce proteins capable of capturing every possible photon at multiple wavelengths which could mean that despite the darkness, the fish roaming the deep ocean actually see in color.

The finding "really shakes up the dogma of deep-sea vision," says Megan Porter, an evolutionary biologist studying vision at the University of Hawaii in Honolulu who was not involved in the work. Researchers had observed that the deeper a fish lives, the simpler its visual system is.

At a depth of 1000 meters, the last glimmer of sunlight is gone. But over the past 15 years, researchers have realized that the depths are pervaded by a faint bioluminescence from flashing shrimp, octopus, bacteria, and even fish.

Most vertebrate eyes could barely detect this subtle shimmer. To learn how fish can see it, a team led by evolutionary biologist Walter Salzburger from the University of Basel in Switzerland studied deep-sea fishes' opsin proteins. Variation in the opsins' amino acid sequences changes the wavelength of light detected, so multiple opsins make color vision possible. One opsin, RH1, works well in low light. Found in the eye's rod cells, it enables humans to see in the dark but only in black and white.

Latest News